Long-range dependencies make the difference - Comment on "A stochastic model for EEG microstate sequence analysis"

نویسندگان

  • Markus Gschwind
  • Christoph M. Michel
  • Dimitri Van De Ville
چکیده

The analysis of spontaneous resting state neuronal activity is assumed to give insight into the brain function. One noninvasive technique to study resting state activity is electroencephalography (EEG) with a subsequent microstate analysis. This technique reduces the recorded EEG signal to a sequence of prototypical topographical maps, which is hypothesized to capture important spatio-temporal properties of the signal. In a statistical EEG microstate analysis of healthy subjects in wakefulness and three stages of sleep, we observed a simple structure in the microstate transition matrix. It can be described with a first order Markov chain in which the transition probability from the current state (i.e., map) to a different map does not depend on the current map. The resulting transition matrix shows a high agreement with the observed transition matrix, requiring only about 2% of mass transport (1/2 L1-distance). In the second part, we introduce an extended framework in which the simple Markov chain is used to make inferences on a potential underlying time continuous process. This process cannot be directly observed and is therefore usually estimated from discrete sampling points of the EEG signal given by the local maxima of the global field power. Therefore, we propose a simple stochastic model called sampled marked intervals (SMI) model that relates the observed sequence of microstates to an assumed underlying process of background intervals and thus, complements approaches that focus on the analysis of observable microstate sequences.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EEG microstate sequences in healthy humans at rest reveal scale-free dynamics.

Recent findings identified electroencephalography (EEG) microstates as the electrophysiological correlates of fMRI resting-state networks. Microstates are defined as short periods (100 ms) during which the EEG scalp topography remains quasi-stable; that is, the global topography is fixed but strength might vary and polarity invert. Microstates represent the subsecond coherent activation within ...

متن کامل

Aiming Higher: Advancing Public Social Insurance for Long-term Care to Meet the Global Aging Challenge; Comment on “Financing Long-term Care: Lessons From Japan”

Globally, aging populations are driving the demand for long-term care (LTC) services for a growing number of older people with disabilities or chronic illnesses. A key challenge for policy-makers in all countries is to find a comprehensive solution to financing LTC services to make them widely accessible, affordable, and equitable for all in need. In this commentary, we...

متن کامل

A two-stage stochastic rule-based model to determine pre-assembly buffer content

This study considers instant decision-making needs of the automobile manufactures for resequencing vehicles before final assembly (FA). We propose a rule-based two-stage stochastic model to determine the number of spare vehicles that should be kept in the pre-assembly buffer to restore the altered sequence due to paint defects and upstream department constraints. First stage of the model decide...

متن کامل

A Chance Constrained Integer Programming Model for Open Pit Long-Term Production Planning

The mine production planning defines a sequence of block extraction to obtain the highest NPV under a number of constraints. Mathematical programming has become a widespread approach to optimize production planning, for open pit mines since the 1960s. However, the previous and existing models are found to be limited in their ability to explicitly incorporate the ore grade uncertainty into the p...

متن کامل

Modeling Uncertainties in EEG Microstates: Analysis of Real and Imagined Motor Movements Using Probabilistic Clustering-Driven Training of Probabilistic Neural Networks

Part of the process of EEG microstate estimation involves clustering EEG channel data at the global field power (GFP) maxima, very commonly using a modified K-means approach. Clustering has also been done deterministically, despite there being uncertainties in multiple stages of the microstate analysis, including the GFP peak definition, the clustering itself and in the post-clustering assignme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • NeuroImage

دوره 104  شماره 

صفحات  -

تاریخ انتشار 2015